CHAPTER FIVE

FUNCTIONS AND ITS ASSOCIATED SIMPLIFICATION

Simplification:

- Let x and y be two sets. When each number of the set x is associated or related to only one member of the set y, then such a relation is known as a function from x to y.

- This is written as f: $x \rightarrow y$ and read as "the function from the set x to the set y or by the equation y = f(x).

- The set x is known as the domain and the set y is known as the co-domain or the images.

- The word function emphasizes the idea of the dependence of one quality on another. For example, let f be the mapping which is defined by f: $x \rightarrow 2x+1$, which can be written as y = 2x + 1. We say that y is a function of x which means that y depends on x

- The variable x is called the independent variable, and y is called the dependent variable. The type of relation between x and y is called a functional relation. Each of the following defines the same set.

1) F: $\{x \rightarrow 2x - 1, x \in N\}$. 2) F = $\{(x,y): y = 2x - 1, x \in N\}$. 3) F = $\{x, 2x - 1: x \in N\}$. 4) Y = $2x - 1, x \in N$. 5) F(x) = $2x - 1, x \in N$.

A function (or mapping) is therefore the relation between the elements of two sets, which are the domain and the co-domain, such that each element within the domain is associated or related to only one element in the co-domain.

Example (1)

Domain Co-domain

Example (2)

This is also a function, since each member of the mdomain is associated with only one member of the co-domain.

Example (3)

This is not a function, for the first member of the domain i.e a, is associated with two members of the co-domain.

(Q1.) Given that F(x) = 2x+1, evaluated the following:

f(2)	(b.) f(4)	(c.) f(-3)

(d) f(-1) (e.) 2f(x) (f.) 5f(x).

<u>Soln.</u>

$$F(x) = 2x+1 =>$$

a.F(2) = 2(2)+1 = 4+1 = 5.
b. F(4) = 2(4)+1 = 8+1 = 9.
c. F(-3) = 2(-3)+1 = -6+1 = -5.

d. F(-1) = 2(-1)+1 = -2+1 = -1.

- e. Since $f(x) = (2x+1) \implies 2f(x) = 2(2x+1) = 4x+2$.
- f. 5f(x) = 5(2x+1) = 10x + 5.

N/B: F(x) = 2x + 1 can be written as F(x) = (2x + 1) or F(x) = 1(2x+1).

(Q2.) If g(x) = 3x - 1, evaluate the following:

a.g(-1)b.) g(-2)c.) $g(^{1}/_{2})$ d.) 3g(x) + 1e.) 4 g(x) - 2f.) -2g(x)+2g.) -3g(x) -3.

<u>Soln.</u>

g(x) = 3x - 1 =>a.g(-1) = 3(-1) - 1 = -3 - 1 = -4.b. g(-2) = 3(-2) - 1 = -6 - 1 = -7. c. $g(1/2) = 3(1/2) - 1 = 3 \times 1/2 - 1 = 1.5 - 1 = 0.5$. d. g(x) = 3x - 1 = 3g(x) + 1 = 3(3x-1) + 1 = 9x - 3 + 1 = 9x - 2. e. $g(x) = 3x - 1 \Rightarrow 4 g(x) - 2 = 4(3x - 1) - 2 = (12x - 4) - 2 = 12x - 4 - 2 = 12x - 6$. Q3. Given that f(x) = 3x + 2 and g(x) = -4x - 2, evaluate the following. a.) (i) f(-1) (ii) f(-2)b.) (i) g(-1) (ii) g(-2)(iii) g(2)c.) (i) f(x) + g(x)(ii) f(x) - g(x)d.) (i) 2f(x) + 3 e.) 3f(x) - 2f.) g(x) - f(x)

Soln.

a.) $f(x) = 3x + 2 \Rightarrow$

(i)
$$f(1) = 3(1) + 2 = 3 + 2 = 5$$
.
(ii) $f(-2) = 3(-2) + 2 = -6 + 2 = -4$.
b.) $g(x) = -4x - 2 =>$
(i) $g(-1) = -4(-1) - 2 = 4 - 2 = 2$.
(ii) $g(-2) = -4(-2) - 2 = 8 - 2 = 6$.
(iii) $g(2) = -4(2) - 2 = -8 - 2 = -10$.
c.) (i) $f(x) + g(x) = (3x + 2) + (-4x - 2)$
 $= 3x + 2 - 4x - 2 = 3x - 4x + 2 - 2$
 $= -x + 0 = -x$
(ii) $f(x) - g(x) = (3x + 2) - (-4x - 2)$
 $= 3x + 2 + 4x + 2 = 3x + 4x + 2 + 2$
 $= 7x + 4$.
d.) $2f(x) + 3 = 2(3x + 2) + 3$
 $= 6x + 4 + 3 = 6x + 7$.
e.) $3f(x) - 2 = 3(3x + 2) - 2 = 9x + 6 - 2$
 $= 9x + 4$.
f.) $g(x) - f(x) = (-4x - 2) - (3x + 2)$
 $= -4x - 2 - 3x - 2 = -4x - 3x - 2 - 2$
 $= -7x - 4$.
Q4. A function f: $x \rightarrow 3x+2$, is defined on the set x
 $= \{-3, -2, -1, 0, 1, 2, 3, 4, 5, 6\}$.
a. Find the images of the following:
i. -3 ii. -1 iii. 2 iv. 5

4 | Page

b. Find the value of x for which

i. F(x) = 8 ii. F(x) = 11 iii. F(x) = -4

Soln.

a) i. F:x \rightarrow 3x+2 and for the image of -3, put x = -3 => f(x) = 3x+2 => f(x) = 3(-3) +2 = -9+2 = -7.

ii. For the image of -1, put x = -1. From $f(x) \rightarrow 3x+2 => f(x) = 3(-1)+2 = -3+2 = -1$.

iii. For the image of 2, put x = 2. From $f(x) = 3x+2 \Rightarrow f(x) = 3(2) + 2 \Rightarrow f(x) = 6+2 = 8$.

iv. For the image of 5 put x = 5.F(x) = 3x+2 = 3(5) + 2 = 15+2 = 17.

b) i. F(x) =3x+2. If $f(x) = 8 \Rightarrow 8 = 3x+2 \Rightarrow 8-2 = 3x$, $\Rightarrow 6 = 3x \Rightarrow 3x = 6$, $\Rightarrow x = \frac{6}{2} \Rightarrow x = 3$.

ii. F(x) = 3x+2 and if f(x) = 11 = 3x+2, =>11 - 2 = 3x

 $\Rightarrow 9 = 3x, \Rightarrow 3x = 9 \Rightarrow x = 9/3, \Rightarrow x = 3.$

iii. F(x) = 3x+2 and if f(x) = -4 = -4 = 3x + 2, = -4 - 2 = 3x = -3x = -6, = -3x = -6, = -3x = -6, = -3x = -2.

Q5. A function f: $x \rightarrow 8x+1$ is defined on the set x

 $= \{-1, 0, 2, 3, 4, 5\}$

- a. Find the images of -1 and 3.
- b. Find the value of x for which f(x) = 7.

Soln.

F(x) = 8x + 1.

(a) For the image of -1, put $x = -1 \Rightarrow f(x) = 8(-1) + 1 = -8 + 1 = -7$.

For the image of 3, put $x = 3 \Rightarrow f(x) = 8(3) + 1 = 24 + 1 = 25$.

b. F(x) = 8x+1. If f(x) = 7 => 7 = 8x+1 => 7-1 = 8x, $\Rightarrow 6 = 8x => 8x = 6$, $=> x = \frac{6}{8} = 0.75$.

Q6. A function $f(x) = \frac{5x-2}{2x+1}$ is defined on the set of real numbers.

a. Determine the images of the following:

i. -2 ii. -1 iii. 2 iv. 4

b. Evaluate the following:

i. f(3) ii.f(6)

c. Find the value of x for which f(x) is undefined.

Soln.

a. $f(x) = \frac{5x - 2}{2x + 1}$ i. For the image of -2, put $x = -2 => f(x) = \frac{5(-2) - 2}{2(-2) + 1}$ $= \frac{-10 - 2}{-4 + 1}$ $= \frac{-12}{-3} = 4$

ii. For the image of -1, put $x = -1 = f(x) = \frac{5(-1) - 2}{2(-1) + 1}$

$$=\frac{-5-2}{-2+1}=\frac{-7}{-1}=7.$$

iii. For the image of 2, put $x = 2 \Rightarrow f(x) = \frac{5(2) - 2}{2(2) + 1}$ = $\frac{10 - 2}{4 + 1}$ 2(2) + 1 = $\frac{8}{5} = 1.6$ b. i. $f(x) = \frac{5x - 2}{2x + 1} \Rightarrow f(3) = \frac{5(3) - 2}{2(3) + 1}$

=<u>15-2</u>=<u>13</u>=1.8.

$$6+1 \quad 7$$

ii. $f(x) = \frac{5x-2}{2x+1}, \Rightarrow f(6) = \frac{5(6)-2}{2(6)+1}$
$$= \frac{30-2}{12+1} = \frac{28}{13} = 2.1.$$

C For the value of x for which the function is undefined, put the down part to be equal to zero and solve for x.

i.e.
$$2x + 1 = 0 \Longrightarrow 2x = 0 - 1$$
,
 $\Longrightarrow 2x = -1 \Longrightarrow x = \frac{-1}{2} = -0.5$.

: The function is undefined when x = -0.5.